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J. Phys A Math. Gen. 25 (1992) 5311-5327. Rinted in the UK 

Improved accuracy of the Birkhoff-Gustavson normal form 
and its convergence properties 

M KaluZat and M Robnik 
Centre for Applied Mathematics and Theoretical Physics, Universify of Maribor, 
Krekwa 2, 62000 Maribor, Slovenia 

Received 4 December 1991, in final form 1 April 1992 

Abstract. We study the generalized HCnon-Heiles system by systematic exploration and 
analysis of the Birkhoff-Gustavson normal form and the asxlciated formal integral of 
motion up to and including the 14th order, which is one order higher than published 
before. At IOW energies the formal integral of motion is still an excellent approximation to 
the exact integral. The convergence properties of the formal integral have k e n  analysed 
in regular and irregular regions. Strictly convergent behaviour is found in same regions 
of chaotic motion. No obvious example of divergent behaviour is found. Regions of strict 
convergence correspond either lo regular motion, or to weally unstable chaotic motion 
with short-time clustering, characterized by a small value of the finite-time analogue of 
the Lyapunw exponent. 

1. Intmduction 

A typical classical Hamiltonian system exhibits three possible regimes of motion: 
regular, chaotic and mixed. In the mixed regime, there are regions of phase space 
where the motion is regular and regions where it is chaotic. Regular trajectories 
exhibit weak dependence on initial conditions and are predictable while trajectories 
in chaotic regions show sensitive dependence on i@al conditions and on roundoff 
errors and are thus unpredictable in the long run. One way to investigate the degree 
of chaoticity or unpredictability of trajectories is to study Lyapunov exponents. A 
Lyapunov exponent is defined as an asymptotic property of orbits, namely as an 
average exponent of the divergence of two exact neighbouring trajectories, averaged 
over infinire time. As defined, it is difficult to calculate reliably, just because of the 

.sensitive dependence on initial conditions. It is not directly related to the short-time 
behaviour of trajectories, which is the only behaviour predictable without enormously 
increased numerical efforts. 

The Birkhoff-Gustavson normal form (Birkhoff 1927, Gustavson 1966) is a pos 
sible method of perturbative investigation of the motion of Hamiltonian systems in 
the neighbourhood of an equilibrium point. Using a series of canonical transforma- 
tions, a series of approximate integrals of motion, which are polynomial functions of 
coordinates and momenta, are c0nStNCte.d order by order in coordinates and mo- 
menta. The series of successive approximations is asymptotic around the equilibrium 

t Present address: Institut fiir Theoretische Physik, Universilat Heidelberg, Philasophenweg 19, 
W-6900 Heidelberg, Federal Republic of Germany. 
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point and is in general expected to diverge. Nevertheless, the first few terms should 
approximate the exact integrals of motion in the regular regime. Furthermore, we 
CaMOt exclude the possibility that the Birkhoff-Gustavson normal form is useful in 
studying the short-time dynamics even in the chaotic regime. To investigate this in 
relation to the convergence properties is the primary motivation of the present work. 

A related work with a similar goal has been published by Shirts and Reinhardt 
(1982), in which they have analysed the convergence and divergence properties of 
the formal integrals as calculated by the method of the Birkhoff-Gustavson normal 
form. They investigate the Pad6 approximants to the formal integral and examine 
their singularity structure. Their results are interesting but still largely qualitative and 
the method is probably more complex than necessary to draw the conclusions. In 
the present paper we re-examine similar questions by using an approach that is as 
elementary as possible and obtain somewhat stronger conclusions. 

TL__ ^d .I._ ___^__. _ ^ _ ^ _  --- L^ -- *_,I^_._ 
1118 gUdlS U1 L U T .  pICS8111 paper G a l l  U 8  SUUUIIiUUCU aS IUIIUWS. 

(i) To provide a general algorithm encoded in a computer program (in REDUCE) 
for an dgebraic compuration of the Birkhoff-Gustavson normal form. To ow knowl- 
edge the only published and available computational scheme is that by Gustavson 
(1966) and by Giorgilli (1979). both being written in FOR", and therefore subject 
to numerical errors as a result of the accumulation of roundoff errors. We will show 
h., rnmnnr:nn n... mo..ltn swith  r..i.t-.rcr\n (IO&&\ tho+ cnmatimn~ tho mr..lt;nn a i + n i ~  "1 *V"'yaL"~~ VU. I W U I W  "'U. "UY.""YYI. \I,"", L l l U L  WY.IUYIW "II ..."ULU.'6 I I IV. , ,  

can be very large, so that the general algebraic computation is undoubtedly not only 
more modern and elegant, but also much more accurate (since all operations are exact 
and the numerical evaluation-if necessary-takes place only at the final step) and is 
thus superior. Our scheme (cf Kaluia 1991) for calculating the Birkhoff-Gustavson 
normal form is as general as possible, i.e. the number of freedoms and the highest 
order desired are arbitrary. 

(ii) To use this program in order to calculate the normal form and the formal 
integral of motion for the (generalized) HBnon-Heiles (1964) system to the highest 
possible order (on the given computer). Indeed, we succeeded in going one order 
beyond the results of Shirts and Reinhardt (1982), i.e. we calculated all orders up to 
and including the 14th. 

(iii) To analyse the convergence properties of the classical normal form and of the 
formal integral of motion and to explain in this manner the striking and until now 
not properly understood difference between the semiclassical quantization methods 
of Swimm and Delos (1979). Noid and Marcus (1977) and Jaffe and Reinhardt 
(1982) on the one side, and of Robnik (1984) on the other side. These authors 
largely agree among each other, although S w i m  and Delos (1979) definitely have 
errors in their calculations as explained in detail by Robnik (1984). The method of 
algebraic quantization by Robnik (1984) yields results which are much more accurate 
and almost exact. This is surprising as Swimm and Delos quantized the normal form 
including terms up to at least eighth order, while Robnik's method was applied to just 
the fourth-order normal form, and yet it yields much better results. The difference 
in the quality of the results can be explained either (A) by the fact that Robnik's 
method is considerably more accurate, or (B) by the fact that at orders higher than 
the fourth order the classical normal form already diverges (thereby also spoiling the 
semiclassical results), or else (C) by the fact that there is some error in the classical 
and/or semiclassical calculations of other workers. We carefully checked and tested 
our algorithm and the computer program and compared the results with Gustavson 
(1966). Apart from the (occasionally considerable) roundoff errors (see section 3) a 
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very good agreement was found, and we are absolutely confident that our program 
is flawless. By examining the convergence properties we exclude the option (B) and 
conclude that (A) is correct but cannot exclude (C) as well. We emphasize the 
importance of the various checks of accuracy of such encoded algorithms, and do not 
exclude the possibility that such tests were not always satisfactory in the papers of 
other workers mentioned above. 

(jv) Finally-as already explained-to use our computational scheme and the 
computer program (in REDUCE) as a tool to generate the normal form and the 
formal integral of motion for the HBnon-Heiles Hamiltonian up to and including the 
14th order, which is one order higher than previously published. By using elementary 
methods we analyse the convergence properties of the formal integral and relate them 
to the properties of motion (regularity and chaoticity). Our main conclusions by using 
elementary methods are similar to but somewhat stronger than those of Shirts and 
Reinhardt (1982). 

2. The general procedure 

2.1. The Butchoff-Gustavson normal form 

The general presentation of the BirkhoffGustavson normal form will be introduced 
along the lines of Gustavson (1966) and Robnik (1984). 

Consider a polynomial Hamiltonian of a system with N degrees of freedom 

where x = (I~,.. . ,zN) are the coordinates and y = ( y l , .  . . , y N )  are the mo- 
menta. The harmonic part of (1) is assumed to be 

h/ 

where w, are the frequencies of oscillation. The term H(j) are homogeneous 
polynomials of order j, that is 

H(j)( . ,y)  = h,,z"' 
I k l t l l l = j  

(3) 

where h,, are real coefficients. The multi-index notation k = ( k l , .  . . ,kN), I k I= 
k, + . . . + k, and xk = I?! . . . x$ is used. 

The Hamiltonian (1) is in normal form to order s if 

% , Y )  H ( J ) ( x , y )  = 0 j = 2,  ... ,.9 (4) 

where D is 
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There is an r-fold resonance at the equilibrium point (2, y) = (O,O), if there are 
r independent commensurability conditions behueen the frequencies, i.e. 

i =  1, ..., T 

k=l 

where aik is an integer matrix with rank T .  The equilibrium point is non-resonant if 
there are no such commensurability conditions, or r = 0. 

That the Hamiltonian (1) can be brought to normal form by canonical transfor- 
mations for both resonant and non-resonant cases was shown by Gustavson (1966). 
The procedure will be presented in the following section. If the Hamiltonian is in 
normal form to all orders, Gustavson showed that: 

(a) For an r-fold resonance there are N - T independent formal integrals of 
motion 

N 

where rk = f(z: + $) for k = l ? .  . . , N and p ! t  are components of the N - T 

kernel vectors of the commensurability matrix aik 

N 

In this case the Hamiltonian itself is an integral independent of all f,. 

the Hamiltonian is a function of them, i.e. H = H ( r 1 ,  . . . , rN). 

2.2. Calculating the normal form 

Let H(z, y) be in normal form to order s - 1. Then there exists a canonical trans- 
formaiion (z,y) + ( q , p j ,  if(.,!) + B(q,P) ,  where q and y are iiw moi&hzie~ 
and momenta, respectively, and H is in normal form up to order s. The generating 
function of the canonical transformation is 

(b) In the non-resonant case there are N independent integrals rl, . . . , T~ and 

G(')(z,p) = zp+ W( ' ) ( z ,p)  (9) 

where W ( b )  is a homo~eneous polynomial of order s and the canonical transforma- 
tions are 

q = z + a W ( q z , p ) / a p  y = p + aW(a)(z,p)/az.  (10) 

By considering the expansion in powers of z and p of the following equation (Gold- 
stein 1956): 

H(z ,p+aW(a)(z ,p) /az)  = fi(z +aW(')(z ,p) /ap,p)  (11) 

H ( j ) ( ( , v )  = fW((,v) 

one sees that the terms which are already in normal form remain unchanged 

j = 2 , .  . . ,S - 1. (12) 
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Here ( E ,  7 )  stand for arguments of the functions. The order s of (11) gives 

D ( z , p ) W ( ' ) ( ~ , p )  = H(*)(z,p) - @')(z,p). (13) 
D(z,p) is a linear operator on the space of all polynomials in variables I and p. The 
linear space of all such polynomials can be decomposed in a direct sum of kernel 
and range subspaces of the operator D(s,p). In order for (13) to have solutions for 
W('), its right-hand side must be in the range of the operator D(z,p). This requires 
fi(')(z,p) to be a kernel component of H ( s ) ( z , p ) .  Therefore 

q Z , p ) ( I , P )  = 0 (14) 

and f i ( z ,  p) is in normal form up to order s. The solution Wca) of (13) is determined 
up to an arbitrary polynomial from the kernel of D(=,+). Following Gustavson, one 
makes W(') unique by requiring its kernel component to vanish. Note that this 
choice of W(*) is not unique. The freedom to add any term from the kernel of 
D(s,p) at will may eventually be used to speed up the convergence properties of the 
integral-see discussions later on. 

Equation (13) is most easily solved for W(' )  by introducing the complex coordi- 
nates 

(15) 
1 1 

zk = &zk + ipk) zi, = -(zk - ipk) .  

The operator D becomes diagonal in the basis of monomials 
4 

Dr"2.n = w ( m  - n ) P z + "  (16) 

where the eigenvalue is w ( m  - n) = Er='=, wk(mk - nk). 

i = s -t 1, s + 2, . . . as 
Using fi(.) and W(*)  thus obtained, one can express all higher-order terms f i ( i ) ,  

(17) 

where 1 = i- I j I (s - 2) and the multi-index notation is j !  = j , !  . . . jN! and 

Note that the nonlinear appearance of W ( " )  in (17) makes it difficult to see what 
the consequences would be of the different choices of W(*) mentioned above. 

By assumption, H(') is already in normal form. By applying the successive canon- 
ical transformations as described, one can generate the normal form to an arbitrary 
order. If one fixes the maximum order desired to be M, then at each canonical 
transformation the transformed Hamiltonian fi has to be calculated to order M. 
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2.3. Expressing the j h a l  coordinates in terms of the original coordinates 

?b calculate the approximate integrals of motion (7) up to order M, each canonical 
coordinate transformation with s = 3,. . . , M, has to be accurate up to order M - 1. 
By inverting the (s - 2)th canonical transformation (lo), the new coordinates and 
momenta ( q , p )  are expressed as polynomial functions of the old coordinates and 
momenta (z,~). The inverses are done correctly up to order M - 1 using an 
iterative procedure. 

M Kaluia and M Robnik 

In the first step, one concentrates on the canonical transformation of momenta 

p = y - a W ( s ) ( z , p ) / a z .  

p o = y .  (21) 

pi+' = y - aW(a)(z, p ) / a +  I p = p '  

(20) 

The zero-order approximation to p as a function of y and z is 

The ( i  + 1)th approximation p i t 1  is 

i = O , l ,  . . .  . (22) 

It turns out that the procedure converges since the lowest power of z and y of the 
difference pi+' - p i  is at least of order ( i  + l)(s - 2) + 1, which is always a strictly 
increasing function of i. To obtain the new momenta p correct up to order M - 1 
one assigns 

= p l ( M - W ( + 2 ) l  (23) 

where LaJ is the largest integer not exceeding a. 

the canonical transformation of coordinates (10): 
In a second step, one inserts the expressions obtained for p into the formulae for 

q = 2 + a W ( J ) ( z , p ) / a p  (24) 

and truncates it at the order A4 - 1. 
The two-step procedure is repeated for each canonical transformation with gen- 

erating functions G(3) to G('"'). 
The formal integrals of motion (7) are quadratic functions of final coordinates and 

momenta. The expressions for final coordinates and momenta are inserted into the 
expressions for the integrals of motion (7). These are truncated at the order M. The 
truncated integrals of motion I(M) should approximate the formal integrals defined 
in (7). 

3. Results for the H6non-Heiles system 

The Henon-Heiles model (Hbon and Heiles 1964) is a classic example of a non- 
integrable Hamiltonian system with two degrees of freedom. Its Hamiltonian is 

H = 4c.t t z; + y: + Y;) + X(ziz2 + 0.3 (25) 
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where zl, z2 are the coordinates and yl, yz are their conjugate momenta and X = 1, 
v = -5 .  We shall call the Hamiltonian (25) the generalized Henon-Heiles Hamilto- 
nian. The unperturbed frequencies are w1 = w2 = 1, so there is a 1-fold resonance. 
The commensurability matrix has the matrix elements al l  = 1, a12 = -1. According 
to Gustavson (7) the formal integral of motion is 

I = I, = TI + Tz = !j(zf + 6: + 5; t C;) (26) 

where E i  and ei are the transformed final coordinates and momenta, respectively. 
As is customary in the literature (Gustavson 1966, Shirts and Reinhardt 1982). we 
define the integral of motion as 

IC = I - H . (27) 

We have used the symbolic algebra program (KaluZa 1991). written in the REDUCE 
programming language (Hearn 1987) to calculate the series of the normal form 
Hamiltonian and the approximate integrals of motion for the H6non-Heiles sys- 
tem. The program works for any Hamiltonian system with polynomial potential with 
non-vanishing harmonic part and for any number of degrees of freedom. The cal- 
culation for the two-dimensional Hknon-Heiles system provides a good test of the 
codes. We have checked all numerical coefficients given in Gustavson (1966) and 
found a perfect agreement. There is a single sign error in the coefficient I( 185) for 
the integral of motion in his table 4, and a number of differences in coefficients of the 
normal form Hamiltonian and the approximate integral in higher orders, which prob- 
ably come from the round-off errors in his numerical procedure. As one example, 
hi coefficient i(427j = iO.8i7255 shouid correctiy read 70.Biiii4. 

The integral Id4) has the following expression in terms of original variables on 
the surface of section, defined by z1 = 0 and y, > 0 

A 2  Id4) Is-= -[45v2(1; + 48 + 6 ~ ( 7 ~ ;  + 5 ~ 2 2 ) ~ :  + (-41; + 2 0 ~ ;  + 5y:)y:]. 

(28) 

We have been able to obtain the approximate integrals up to and including the 
14th order in powers of coordinates and momenta. This is one order beyond the 
previously published results for the Hc?non-Heiles system (Shirts and Reinhardt 1982). 

We are interested in the convergence properties of the successive approximate 

motion I d M )  of given order M is an analytic function of coordinates and momenta 
and is thus isolating. In the regular regime, where the exact isolating integrals of 
motion exist, the integrals I d M )  can be expected to approximate to the exact integrals 
of motion, at least in the asymptotic sense. In the chaotic regime, however, there 
are no exact isolating integrals. The approximate integrals I<('"'), obtained from the 

exact integrals. What are the consequences of this fact for the convergence of the 
integrals I C ( M )  in the chaotic regime? 

In figure 1 the convergence of the approximate integrals of motion I d M )  of 
the HBnon-Heiles system on the Poincarc? surface of section is presented at the 
energy E = A. This energy is in the regular regime of the H6non-Heiles system. 

mouon o'Diained from nomai form, TT'e appioxximaie of 

aofr,a;-foi,T, pime&ie ha-qe a iiiOie &?ficck task io zp,pior;T,?iaie non-&o;aibig 
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P"' 

l e  I l f )  

l a '  It 

1 I I 

Figure 1. Convergence of the approximate integrals of motion of the HCnon-Heiles 
system at the energy E = 8. In plot ( a )  the curves of wnstant value of the approximate 
integral of motion K(') = I(') - H on the surface of section are drawn. Plots (b), (c), 
(d),  (e) and U) wrrespond to integrals K(M) for M = 6, 8, 10, 12 and 14, respectively. 
In each plot (am the values of the approximate integrals of motion on the curves were 
chosen such that there is a curve p ing  through each of the starting points listed below. 
Plot (9) is a numerically calculated PoincarC surface of section. The trajectories needed 
in (g) are obtained using the fourth-order Runge-Kutta integration method with the 
time step h = 0.001. The starting pints  of trajectories were chosen on the surface of 
sectionwith ( z z , y z )  = ( O , O ) ,  ( - O , l l , O ) ,  (-0.13,0), (-0.2,0),(-0.25,0), ( O . l , O ) ,  
(O.IS,O), (-0.05,0.2), (-0.05, -0.2), (0.25,0.3). The parametersof the HCnon-Heiles 
Hamiltonian are X = 1, q = - f .  m e  surface of section is defined by the conditions 
21 = 0 and yl > 0. In all plots. the z-axis represents the uxlrdinate zz and the 
y-axis represents the momentum yz. The range of both quantities is [-1.O,l.O]. Note 
the clear wnvergence of the cantour plots to order M = 14. Within the graphical 
resolution, plots (e) and U) do  not differ. l l e  curves in plot Is) wnsist of individual 
points of interseaion of the trajectories with the surface of section. These are identical 
to the mrrespnding curves of wnshnt value of K(") in plot U). 
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Figures l(a)-lf) represent the curves of constant value of the successive approximate 
integrals of motion IC on the surface of section. Up to the last order calculated, a 
perfect convergence of the curves can be seen. Furthermore, a perfect agreement 
can be seen with the exact in figure lk ) .  This figure is the Poincar6 sur- 
face of section obtained from the numerically exact trajectories. The starting points 
of these trajectories lie exactly on the level lines of the approximate integrals of 
figures l(a)-ff). 

In figure 2, the Henon-Heiles system is studied at a higher energy, E = i, which 
is close to the critical energy. The critical energy is defined as the energy at which 
the surface of section is evenly divided into regular and irregular regions (Henon and 
Heiles 1964). The convergence of the approximate integrals of motion (figures 2(d)- 
ff)) is now worse than the convergence at E = A, An overall impression is that 
iiguro qa) aiiu L(C) art: UIUSL biuiuar tu cacn uuier anu urai we uveran uebt app~un- 
h a t e  should be Figure 2(g) represents the numerically calculated Poincark 
surface of section. One observes a number of small islands of stability around the 
new periodic orbits appearing at the outer boundary of the larger islands of regu- 
lar behaviour. These do not seem to be present in figures with the approximate 
integrals. A novel feature in figures 2(a)-lf) is slow convergence inside the largest 
1cgmrU WIaIIU "'1 u1c L l g r r - r r ' l n u  JIYC. l l l W  W U I W  dJ d >u,yror;. L11C y"x,l""n,y 0 l l Y L  

excluded, that higher orders would also exhibit convergence in this region. On the 
other hand the smaller stability regions up/down seem to be in a convergent manner 
approximated by the integrals of the largest orders. 

Figures 3(a)-(f) represent the behaviour of the approximants at the energy E = $. 
This is exactly the ionization energy and the orbits are not bound to the potential 
well at any slightly higher energy. The successive approximants show again different 
convergence behaviour to those at lower energies. In general, the convergence can be 
said to be worse than at both lower energies. In part, this is due to more and more 
complex contours corresponding to the approximate integrals of higher orders-see in 
particular figure 3lf). There are still two larger regions on the surface of section where 
the successive approximants show quite convergent behaviour which is surprising since 

surface of section. Almost the entire surfacc of section seems to be chaotic and the 
plot is not very informative in the chaotic region. As we shall see in more detail 
later, the convergence properties of the approximate integrals reveal much more 
information in the chaotic region than the surface of section plot 3k). WO small 
stable islands surround a bifurcated stable periodic orbit. The oscillating behaviour 
of the formal intepls  tries to capture this feature. 

In figure 4 the convergence properties of the approximate integrals for a gener- 
alized Henon-Heiles system (25) for X = -1 and 11 = 2 are presented. The system 
(25) is integrable for any X at 1) = 2. Naively one might expect that in this integrable 
case the formal integrals of motion will be convergent, or even exact. The exact 
integral of motion for X = -1 and 1) = 2 reads (Bountis ef a1 1982): 

c:_-.-_ *I,\ ^__I n,., --- -,.-. .̂  --.L ..L.. .__I  .L.. .I._ -...--I, I.--*" 

_"I.. In- &Tm-,4 _- +Lo -:A.+ Lm-A Arln TI.& ---"" "- "..-- :-n TL- ..-e&k:t:+.. :r ..n+ 

these rpgions lie. in q i m e . ,  Figfire 3(g) is the ~ 0 r r q ~ f i d Q  bb.car~. 

Note that it is a polynomial of coordinates and momenta. Figures 4(a), (b), (c) and 
(d) present the approximate integrals of orders 4, 6, 8 and 10, respectively. The 
contours presented in these figures converge. The figures corresponding to orders 
12 and 14 are not presented because they are equivalent to figure 4(d) within the 
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l a '  It l b )  

Flgure 2. Convergence of the approximate integrals of motion of the the Henon-Heiles 
system a t  the energy E = f cs critical energy. In plot (a) the c u m  of eonstant value 
of the approximatc integral of motion K(') = I(') - H on the surface of scc!iom are 
drawn. The w n t o u n  with the values of K(') from -0.020 to 0.020 in steps of 0.001 
are drawn. Plots (b), (c). (d), (e) and V, wrrespond to integrals IdM) for M = 6, 
8. 10, 12 and 14, respectively. Plot (g) is a numerically calculated Poinard surface of 
section. The trajectories needed in (g) are obtained using the fourth-order Runge-Kutta 
integration method with the time step h = 0,001. The starting points of the uajectories 
in plot (g) were chasen such that the trajectories wver both regular and irregular regimes 
on the surface of section. The  parameters of the Henon-Heiles Hamiltonian are X = 1, 
11 = -5. The surface of section is defined by the conditions 21 = 0 and VI  > 0. In all 
plots the z-axis represents the wordinate 21 and the y-axis represents the momentum 
yz. The range of both quantities is [-l.O.I.O]. Note that the convergence of the 
contour plot8 is less pronounced than in figure 1. Nevertheless, the shapes of the regular 
regions in the exact plot are well reproduced with higher-order approximate integrals. 
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Flgum 3. Convergence of the approximate intepals of motion of the the HCnon-Heiles 
system at the energy E = 4 (ionhtion energy). In plot (a) the curves of constant value 
of the approximate integral of motion K(') = I ( ' )  - H on the surface of section are 
drawn. The wnlours with the values of IC(') from -0.080 to 0.080 in steps of 0.005 are 
drawn. Plots (b), (c), (d), (e) and V, correspond to integrals I d M )  for M = 6, 8, to, 
12 and 14, respectively. Plot (9) is a numerically calculated Poincar6 surface of section. 
The trajectories needed in @) are obtained using fourth-order Runge-Kutta integration 
method with the time step h = 0.001. The starting points of the trajectories in plor (9) 
were chosen on the surface of section with (z2,yz) = (O,O), (-0.11,O). (-0.13,0), 
(-0.2,0), (-O.Z,O), (O.l,O), (0.15,0), (-0.05,O.Z). (-0.05,-0.2), (0.25,0.3), 
(0,0.22), (Il,0.42), (O.OS,O), (-0.4,0), (-0.38,0), (-0.35,O). The parameters of 
the Henon-Heiles Hamiltonian are X = 1, q = - 5. The surface of Section is defined 
by the conditions z1 = 0 and yl > 0. In all plots the z-axis represents the coardi- 
nate 22 and the y-axis represents the momentum y2. ' b e  range of both quantities is 
[-LO, l.O]. The convergence of the curves of constant values of approximate integrals 
depends on the position on the surface of section. If seems that the curves converge in 
some parts of both regular and chaotic regions. 
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t I 

Flpre 4. Convergence of the approximate integrals of motion of the generalized Henon- 
Hciles system (U) with X = -1 and tj = 2 at the energy E = 0.534. This system 
is inlegable. In plot (a) the NWeS of constant value of the approximate integral of 
motion K(') = I ( ' )  - H on the surface of Section are drawn. The values of the integal 
are chosen so that the curves of constant value of the integral go through the points 
(E?, yz) = (-O.Ol,O), ( -0 .03 ,0) ,  (-0.05, O), (-0.6,O) and (-O.W,O) on the surface 
of section. Plols (b), (c )  and (d) correspond to integrals 1 d M )  for A4 = 6, 8 and 10, 
respectively. Plot (e) represents the contour plots of the exact integral of motion of (29). 
The surface of section is defined by the conditions 21 = 0 and yl > 0. I n  all plots, the 
z-axis represents the coordinate x2 and the y-ads reprewts the momentum 97. The 
range of both quantities is [-O.Z,O.Z]. The wnvergencc of the contours is apparent 
up to order 10. However, as seen when comparing plot (d) w i t h  plat (e), only inner 
contours of plot (d) have converged to the exact contours of plot (e). 

graphical resolution. In figure 4(e) the contours of the exact integral of motion of 
(29) are drawn. By comparing this figure to figure 4(d), one observes that only the 

have not. This is a slight disappointment. Perhaps we have reached the point of 
optimal approximation already at the order A4 = 10-12 and further orders diverge. 
We cannot give firm evidence for this since, as mentioned above, we have seen the 
stagnation at orders 10 to 14. 

The expression for the exact integral of motion f, of (29) on the surface of 
section z1 = 0, y1 > 0 is extremely simple. The successive approximants are more 

~EXYEGS~ ~ i i t t ~ ~  ha? mr<Ciged i6 i k  ~ i f i ~ ~ ,  w%:e i k  OliielniOSi ~ i i ~  
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complicated. What one does here is to approximate the simple polynomial by a 
series of higher and higher order polynomials, which perhaps is the main reason for 
the slow convergence. Of course, the formal integral may be generally written as 
a series of two invariants-the Hamiltonian and the additional integral-and it is 
this function which obviously converges slowly or perhaps even diverges. In general, 
the integrability does not necessarily imply convergence of the normal form and the 
formal integral of motion, as has been shown e.g. by Ali et al (1986). In other 
words, the divergence of the Birkhoff-Gustavson normal form series is not sufficient 
to maintain the non-integrability of the underlying Hamiltonian system. 

There are two possible avenues of escape in this situation. One can try to use 
methods of resummation which presumably would give better convergence in the 
integrable case presented. In addition, one might use the non-uniqueness of the 
procedure of choosing the generating function for the canonical transformations W, 
as noted before. We have left these possibilities for consideration in further work. 

For the reasons related to the semiclassical quantization of the Birkboff- 
Gustavson normal form (Rohnik 1984, Swimm and Delos 1979, Jaffe and Reinhardt 
1982, Noid and Marcus 1977), we have done a calculation for the generalized Henon- 
Heiles Hamiltonian (25) with parameters X = 1/m, 1) = -$. We have found in 
excellent convergence up to and including the 10th order, but do not show the results. 
Because of the homogeneity of the generalized HBnon-Heiles Hamiltonian of (25), 
there is a scaling property of the system: by rescaling the momenta, coordinates, 
and X 

the dynamics of the system remains the same at the scaled energy 

E + P ~ E .  (31) 

Thus, the dynamics of the system are equivalent to those of the HBnon-Heiles Hamil- 
tonian with parameters X = 1, 1) = -5 and energy E = &. This energy is far below 
the lowest energy presented in figure 1, with the same X and q and the excellent 
convergence of the approximate integrals of motion is not surprising, so we do not 
show the results, especially since the agreement is perfect. Even the lowest, fourth- 
order integral Id4) is of better quality than fourth-order integrals at higher energies, 
presented in figures l(a), 2(u) and 3(a). This probably accounts for the quality of the 
quantum results for the energy levels, obtained by Robnik (1984). using the fourth- 
order normal-form Hamiltonian. however, it is not clear why the quantum results of 
other workers (Swimm and Delos 1979, Jaffe and Reinhardt 1982, Noid and Marcus 
1977). who quantize the eighth-order normal form, are worse than those of Robnik 
(1984). At this point we can conclude that their lack of success as compared to Robnik 
(1984) cannot be due to the onset of the divergent behaviour already at the classical 
level. As mentioned above, the formal integrals of motion show perfectly convergent 
behaviour up to and including the 10th order at the energy of the quantum ground 
state. As stated in the introduction, we conclude that either Robnik's method of 
quantization is considerably more accurate than the methods of other workers men- 
tioned above, and/or their calculations are not without errors. As explained in detail 
by Robnik (1984) the work by S w i "  and Delos (1979) is definitely in error in this 
respect. It should be mentioned that Robnik's method has been successfully applied 
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to the hydrogen atom in a strong magnetic field (Robnik and Schriifer 1985), which 
is a classically non-integrable and chaotic Hamiltonian system as has been shown for 
the first time by Robnik (1981), and further explained by Robnik (1982). For related 
results see also Kuwata er ul (1990), and the review by Hasegawa er al (1989). 

The Birkhoff-Gustavson normal form is almost always a divergent series, and 
at best is an asymptotic series to the exact integrals. Shirts and Reinhardt (1982) 
attempted to improve the convergence properties by using Pad6 approximants to the 
polynomial formal integrals of motion obtained by the Birkhoff-Gustavson normal- 
form procedure. They related the local property of clustering of poles of Pad6 
approximants to chaoticity of the system. 

We have tried to find a simpler and transparent criterion for the local convergence 
and divergence of the approximate integrals, in order to show the expected correlation 
between the convergence of the approximate integrals and the regularity of motion. 
Having calculated the values of all even-order approximate integrals of motion up to 
and including the order 14, probably the simplest but quite strong criterion for the 
local convergence on the surface of section z1 = 0 is given by 

1 if I K(j- ' )  - I<-(') I>) IC( j )  - IC(J+z) I for j = 6,8,10,12 
otherwise . 

(32) 
( 0  

C(z23Yz) = 

At low energies, such as E = &, by using this criterion, we found convergence 
almost everywhere on the surface of section, which is regular everywhere. In general 
we have found that the approximate integrals converged in some regions of chaotic 
regime and did not converge in some regions of regular motion. 

In figure 5 the convergence plots of this type are compared to the results obtained 
with the numerical calculation of trajectories. In figure S(u) the Poincark surface of 
section plot is displayed for the Hhon-Heiles Hamiltonian at the energy E = A. In 
figure S(c), the convergence function C(z,, y2) is presented: the dark points repre- 
sent C( z2,  y2) = 1. One sees a very good agreement between figures 5(u) and 5(c): 
all the largest dark regions in (c) correspond to the parts of the regular regions on the 
surface of section. iiowever, the correspondence is noi one io one. There are large 
regular regions in ( U )  where the convergence function C is 0. This is not unexpected, 
as the convergence function of (32) contains a strong condition of monotonic absolute 
convergence of the contributions of the successive approximate integrals. Figure 5(b) 
represents the Poincar6 surface of section at the energy E = 4, the ionization energy. 
Most of the trajectories are chaotic. In figure 5(d) the corresponding convergence 
LYllLLlVll I> pG=.G,,LG". 111G l l l " J L  BUrpL'r,L1Lg L C L l U I C  w LILO_, U,., w 1 L * s - . p , c " -  u..Ls-.."n' Y 

still satisfied in large areas inside the chaotic region. Since the convergence criterion 
is strong, there should be a reason for this behaviour. 

We have explored those parts of the chaotic domain where the convergence func- 
tion is unity. In particular, we have studied the behaviour of trajectories with starting 
points in regions denoted by A, B, C, D and E in figure 5(d). It seems that the 
regions of convergence predict the short-period weakly unstable periodic orbits, and 
their weakly unstable neighbourhoods: the latter are located near the centres of 
pronounced regions of convergence. 

It turns out that, although being in the chaotic regions, the trajectories which 
start close to the regions A, B, C, D and E show a much larger degree of short- 
time order than the trajectories with starting points elsewhere in the chaotic regions. 

&.--a:.-- :- --..---&-A T1.n e--* ~..-..-:o:nn Font..-- ir thnt *ha ~ n n v r ~ i n n n ~ ~  rritnn'nn k 
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FIFE 5. Connection between the finite-time Lyapunov exponent (m), and the con- 
vergence behaviour of the consecutive approximate integrals of motion. In plot (a )  the 
Poinear6 surface of section is presented at the energy E = i, which is cloae to the 
critical energy (Henon and Heiles 1964). Plot (c )  is the corresponding convergence plot, 
calculatd on a mesh 250 x 25O-sce ten for the exacl definition. Roughly speaking, thc 
dark areas of the plot (c) represent regions where the approximate integals of motion 
converge. Plot (e) is the plot of the mt.8 La, calculated for six dynamical t imessee  
text for exact definition. The dark arcas in plot (e) represent the regions on the surface 
of seclion where mu is less than 0.07. In plot (b) the PoincarC surface of section is pre- 
sented at the ionization energy E = 6.  Plot (d )  is the wrrespnding convergence plot, 
calculated on a mesh 250 x 250. ’Ihe dark areas of plot (d) represent regions where the 
approximate integrals of motion converge. Plot V, is the plot of the PIZE L6,  calculated 
for six dynamical times, on a mesh 50 x 50. The dark areas in plot (f) represent the 
regions on the surface of section where La is less than 0.1. The parameters of the 
Htnon-Heilss Hamiltonian are X = 1, = -$. The surface of section is defined by 
the conditions I, = 0 and yl > 0. I n  a11 plots, the z-axis represents the cwrdinate z2 
and the y-axis represents the momentum y2. m e  range.of both quantities is [-1.0,1.0]. 
In the case E = the large& dark regions in plot (c) lie inside the repular regions on 
the surface of section in plot (a). The dark regions in plot (c) also lie inside the regions 
of surface of section, where the m is smallest (dark regions in plot (e)). In the case 
E = &, there are just very tiny regions of regular motion left in plot (b), so the plot 
has become uselen for studying the regularity propt ies  of the phase space. However, 
the convergence plot (d) still shows the pronounced regions of convergenm, even in the 
chaotic regime. These regions of convergence of the approximate integrals coincide with 
the dark regions in plot (f), where the FCL@ is the smallest. 
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By the short time we mean a few, say 2-10 dynamical times (surface of section 
return times). 'lb make the previous statement quantitative, we define the finite-time 
Lyapunov exponent (FTLE) L ,  as 

M Kaluia and M Robnik 

L',, = In (Ji(612(1)lZ t I ~ Y A ~ ) I ~ ) / ~ ) /  I t I 
L ,  = ( L ;  t Ll,)/Z 

(33) 
(34) 

where 6 is the initial difference between the two neighbouring trajectories, taken in 
the z2 direction, and we take time t to be n dynamical times, the time needed for 
n returns to the surface of section, following the trajectoly either fonvard ( L ; )  or 
backwards (LLJ  in time. We choose 6 = lo-,. 

In figure 5 0  the regions where the FIZE L ,  is less than 0.1 are shown in black. 
The regions 4 B: C: D and E do indeed cnrrqond !Q the point. where FEE is 
less than elsewhere in that neighbourhood. In figure 5(e) the regions where the FTLE 
L ,  is less than 0.07 are black. The energy is E = 1/6. Again; the regions where 
the convergence function (32) is unity in figure S(c) correspond to the regions of 
relatively small FTLE in figure 5(e). 

One should note that once the expressions for the formal integrals are calculated, 
it is much faster to calculate the convereence function C than to calculate the FILES; 
which requires precise calculation of trajectories in chaotic regime. 

Finally, when talking about the relation between the divergence properties and 
chaoticity of classical motion, we wish to point out an inconsistency in the qualitative 
results by Shirts and Reinhardt (1982). They look at the singularities (poles) of the 
Pad6 approximants of the formal integral. On the one hand they claim that 'pole 
regions tend to clump together and become more prominent precisdy in the regions 
where chaotic motion is observed'. This is certainly not strictly true: in their figure 7 
at p 2  = 0.10, q2 = 0.20 and symmetrically there is a pole, or else there is an 
inaccuracy in the presentation. But on the other hand in this region the motion is 
regular, as can be seen in their figure 2. Therefore, their conclusions are qualitative 
too. 

4. Summary and perspectives 

Let us summarize our main conclusions, the other ones being mentioned in the 
introduction and in the text. 

We have investigated the convergence properties of the Birkhoff-Gustavson nor- 
mal form in various regimes, reguiar, chaotic and mixed, ot the Henon-Heiies system. 
At energies where the motion is regular, the integrals of motion are an excellent ap- 
proximation to the exact integrals of motion and we have no evidence for divergence. 
Close to the critical energy, in the mixed regime, the integrals approximate to the 
exact integrals in the regular regions. In the mostly chaotic regime, the formal inte- 
grals may still converge in some regions. It turns out that in the regions where they 
do converge, the finite-time Lyapunov exponent assumes reiativeiy smaii vales. Tne 
convergence of the formal integrals predicts the regions of weak chaos inside chaotic 
regions. 

On the other hand, we were not able to find any clear example of divergence of 
the approximate integrals of motion, in spite of quite a systematic search. It is thus 
reasonable to investigate further to what extent the approximate integrals describe 
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the motion in the chaotic regions for the sufficiently short times. In this regard it 
would be helpful to obtain even higher orders, for which one could explicitly employ 
the special symmetries of the Hhon-Heiles system (see Fmkler et al 1991). 

The results suggest the need to study the convergence properties of the approxi- 
mate integrals by various methods, such as Pad6 approximants or Bore1 resummation. 
According to Bogomolny (1983), the asymptotic expansions of the coefficients of the 
formal integrals can be used to improve the convergence properties of the approxima- 
tions. Moreover, Bogomolny (1984) relates the divergence properties of the normal 
form and of the formal integral of motion to the square root singularities associated 
with the shortest periodic orbits. Last but not least, although one feels that Gus- 
tavson's choice for the generating function W is a privileged choice, it is nevertheless 
not unique and other choices might provide even more convergent results. 
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